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Introduction to compartmental reserving modelling
framework




The compartmental reserving modelling framework

A Key idea: Start by fitting model to data, not data to model

A At the centre of the framework is to think about the data generating process

I Begin by simulating artificial data that shares the expected real data characteristics

A Use ficompartmentso to reflect differ
I Exposure being underwritten
I Claims being reported
I Payments being made RES, | institute
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The compartmental reserving modelling framework

A Expert knowledge required to model and parameterise

I A Framework not a Method!

A Benefits:
I Transparent model that can be criticised
| Provides additional insight into business processes

I Practitioner knowledge can be incorporated into model easily
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Chain-ladder
methods

Non-parametric
Multiplicative

Cumulative triangles
Paid or incurred

Mean + StdError

Extensions

BF Methods
Munich-chain-ladder
Bayes chain-ladder

l

Cumulative
growth
curves

Parametric
Multiplicative

Cumulative triangles
Paid or incurred

Incremental

growth
curves

Parametric

Additive

Incremental triangles
Paid or incurred

Mean + StdError (Max. Likli.)
Full distribution (Bayes)

Hierarchical
compartmental model

Parametric
Additive

Incremental triangles
Paid + Qutstanding simultaneously

Mean + StdError (Max. Likli.)
Full distribution (Bayes)
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Tail extrapolation

f

Fairly robust, but projections on paid and incurred data can differ

Consistent with paid and Institute
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Hierarchical compartmental reserving models in a
nutshell

A Use differential equations to model the mean claims process through time

A Consider which data generating distribution gave rise to the mean process,
e.g. Gaussian, Log-normal, Negative-binomial, Tweedie

I Which variance metric can be considered constant across claims development
periods, if any? E.g. coefficient of variation

A Use expert knowledge to set priors on parameters

T>

Generate data from model: do simulations capture expected features?

A Update model with actual observations to obtain posterior parameter
estimates and predictive distributions
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Modelling mean claims process



Compartmental models

A Popular tool in multiple disciplines to describe the behaviour and dynamics
of interacting processes using differential equations

A Each compartment relates to a different stage or population of the process,
usually modelled with its own differential equation

A Examples are found in:
I Pharma, to model how drugs interact with the body
| Electric engineering, to describe the flow of electricity
| Biophysics, to explain the interactions of neurons
I Epidemiology, to understand the spread of diseases .
| Biology, to describe interaction of different populations ’éi‘ Ln:éit;;gu“y
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Simple Compartmental
claims development model

Exposure is

Ker underwritten and
ﬁ@ earned
‘ ﬂ RLR

RLR ke

dEX/dt = —k,, - EX
dOS/dt = k., - RLR- EX — k, - OS

Claims

being
dPD/dt =k, - RRF - OS processed

Ko (
The parameters describe: N
Insurer pays claims
+ k., the rate at which claim events occur and are subsequently reported to :é
the insurer
RRF ks

¢ RLR the reported loss ratio

+ RRF the reserve robustness factor, the proportion of outstanding claims
that eventually are paid

. kp the rate of payment, i.e. the rate at which outstanding claims are paid




Solutions Define Development Patterns

o dEX/dt = k., - EX
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' dOS/dt = k., - RLR- EX — k, - OS
© . dPD/dt = k, - RRF - OS
xposure

— OS claims
T —— Paid claims

...... Seped s PX() < T-en(
& 0S(t) = O-RLR - ker 'kRL_Rk. her (exp(—kpt) — exp(—kert))
° - | | | I I | PD(t) = %:;:M(ker (1 —exp(—kyt) — kp - (1 — exp(—kert))
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Compartmental model with
two claims settlement ~ 0 indensrtonand
processes ‘/\

RLR ke

Single rate of settlement can be too simplistic to
capture heterogeneous claims characteristics and
hence settlement processes at an aggregated level

Claims going through
a second stage, e.g.
litigation
Koz

Claims being
processed
directly

dEX/dt = —k., - EX

ket

dOS, /dt = ke - RLR - EX — (k,, + k) - O W
dOSz/dt — kp2 . (OS]_ — OSZ) Insurer pays claims
dPD/dt = RRF - (kp, - OS1 + kp, - OS3) RRF (K + ki




40 60 80 100

20

Exposure
— 081

0S2
— 081+082
— Paid

031+ OS2 + Paid
------ ULR =RLR * RRF

Development period

EX(t) =II exp (—ke.rt)
II RLR ker

O51(t) =4—% —1— [exp (—(kp, + Ky, )t) — exp (—kert)]
er P1 Pa
05,00 T RLR ke, ky, :
Tk, (g, — k) (ke — Ky, — Ky, )
exp (—(k T kpz)t)(ker - kpz)*
EXP( kpzt)(ke’“ - k}h - kp2)_
exp (—kert) kyp, |
PD(t) II RLR RRF [

km (sz - ker)(ker - kpl - kpg)
(kp, (ker (kp, — ker) — Ky, (Kp, + kp,)) + 2kerky, ) +

exp (—(kp, + kp, )t) (Ker (kerky, — Kerky, + k2, — kp kp,)) +
exp (—ky, t) (kepky, (ker — kp, — kp,) +

exXp (_kert) (km (ka kpz + k%; - ke'rkpl ))]

Institute
and Faculty
of Actuaries



Compartment models can be extended easily ...

A

T>

To incorporate different claims processes, e.g. a faster and slower
settlement process

Separate earning and reporting processes
Time dependent parameters

Calendar year effects

Analytical solutions may become complex, but can opt for ODE solvers
Note: Paid claims are scaled integration of outstanding claims
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Modelling uncertainty



Be careful with your parameter bookkeeping

A In a Bayesian framework we distinguish between:

I Priors, before we have actual data:
A Prior parameter distribution, e.g. Planning Loss Ratio (PLR)

A Prior predictive distribution, e.g. Capital Model Loss Ratio (CLR)

I Posteriors, priors updated with actual data:
A Posterior parameter distribution, e.g. Expected Loss Ratio (ELR)

A Posterior predictive distribution, e.g. Ultimate Loss Ratio (ULR)&:»% etitute
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Which process variance metric can be kept constant?

Simulated Behaviour: Cumulative vs. Incremental Model

Cumulative Paid Model: Cumulative vs. Incremental Realisations Incremental Paid Model: Cumulative vs. Incremental Realisations
Modelled Cumulative = Black | Implied Incremental = Grey Modelled Incremental = Black | Implied Cumulative = Grey
1259 | 125%
100% 1 100% 1
E 75% 1 zc: 75%
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25%
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25% 0%
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Development Year Development Year
A Modelling cumulative paid data directly is problematic
A . . . . _— ?ﬂiikgm Institute
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Parameter Uncertainty + Data Generating Process

A AWhich parameters combinations are

| Start with prior assumptions, e.g. ULR ~ logN(* ,,, ), ... ﬁ
| Update prior assumptions via the likelihood, L(y; ULR, ... : ﬁ
I Obtain 6posterior6 parameter di)/ré\\bution

A From posterior ELR to posterior ULR:

1. Simulate realisations from posterior parameter distributions

Loss ratio
°

2. Simulate realisations from assumed data generation distribution

3. Sum future paid increment posterior predictive paths




O0Borrow Strengtho with HiIerar

A Which parameters vary across different cohorts, e.g. accident years and
which are more likely to be fixed?

I Chain-ladder assumption: shape of curves considered fixed across accident years

| Ultimate loss ratios vary by accident years

A Hierarchical models allow all parameters to vary across cohort

I A parameter has greater potential to deviate fromt he &écohort average
value where data are rich (credibility weighting / shrinkage)
| Hierarchical priors are used to prevent overfitting (regularization) L8 | institute
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Compartmental Reserving Models

Case Study



Example data set: Cumulative paid and incurred

Full 10 year history
for accident years
1988 - 1997
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